

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 To install this library, you will need to first install the sba library (libsba.so); then the sba projections library (libsbaprojs.so) before installing the Python wrapper using setup.py.

	Obtain sba (current version 1.6) from [http://www.ics.forth.gr/~lourakis/sba]

	You will need to alter the Makefile in order to build the library as a shared object. See the example Makefile; or add the following lines to Makefile using a text editor:

libsba.so:
	$(CC) -fPIC -c sba.h sba_levmar.c sba_levmar_wrap.c sba_lapack.c sba_crsm.c sba_chkjac.c
	$(CC) -shared -o libsba.so $(OBJS) -llapack -lblas

	Build the sba library as a shared object with make using the following at the command prompt:

make libsba.so

	This should result in a file libsba.so that provides the compiled shared object that can be called from Python. As adminstrator/sudo, place libsba.so in /usr/local/lib, create a symbolic link for it, copy the header too, and update the shared library information (default locations for Ubuntu given below; on Mac o Windows you will need to use different locations):

cp libsba.so /usr/local/lib/libsba.so.1.6
chmod a-x /usr/local/lib/libsba.so.1.6
ln -s /usr/local/lib/libsba.so.1.6 /usr/local/lib/libsba.so
cp sba.h /usr/local/include
ldconfig

	Next, obtain libsbaprojs using Mercurial to clone from [https://bitbucket.org/devangel77b/libsbaprojs] or [ssh://hg@bitbucket.org/devangel77b/libsbaprojs]:

hg clone ssh://hg@bitbucket.org/devangel77b/libsbaprojs

Install it by following the instructions provided with it. You will run make to create libsbaprojs.so and then copy it, and the associated headers, into the same places you put libsba.so and sba.h.

	After libsba and libsbaprojs are available, you can install the Python sba code using the following (as administrator or sudo):

python setup.py --install

	If building for a Mac, you may wish to use .dylib extension rather than .so; you will also want to modify the corresponding lines of code (e.g. libsba = ctypes.CDLL("libsba.dylib")).

Notes on generating libsba.so

	To obtain libsba, download sba-1.6.1.tgz from the original Lourakis sba library at [http://www.ics.forth.gr/~lourakis/sba]. Unzip the contents and change to directory containing them; we will build here.

	Copy the Makefile.example file to the build directory and rename it Makefile. You will use the make command to build libsba.so.

	Follow the install directions (as administrator). For details see HOWTO.md in the main python-sba directory.

Python wrapper for Lourakis’ sparse bundle adjustment C library

Dennis Evangelista

Enjoy! The most recent version can be obtained from bitbucket [https://bitbucket.org/devangel77b/python-sba] via https or ssh:

hg clone https://bitbucket.org/devangel77b/python-sba
hg clone ssh://hg@bitbucket.org/devangel77b/python-sba

As prerequisites, you will also need to install the sba library as a shared object (libsba.so) (Makefile with shared object target included here) and the sba projections library (libsbaprojs.so):

http://www.ics.forth.gr/~lourakis/sba
https://bitbucket.org/devangel77b/libsbaprojs

See HOWTO.md for details.

THIS HAS MOVED

Please contact Brandon or Ty; the supported version is at https://argus.web.unc.edu

New in 1.6.8

Dylan Ray updated some things to get it to play nicer with Python 3.

Typical usage

The main way to use this is as follows

import sba

cameras = sba.Cameras.fromTxt('cams.txt')
points = sba.Points.fromTxt('pts.txt',cameras.ncameras)
newcams, newpts, info = sba.SparseBundleAdjust(cameras,points)

If you wish to alter the default and autodetected options, you can
create an Options object and change it, and then pass it to sba:

options = sba.Options.fromInputs(points,cameras)
can also update options.XXX to appropriate values
newcams,newpts,info = sba.SparseBundleAdjust(cameras,points,options)

Hopefully this is cleaner than the original way to call it in C.

Helpful Hints

Some users have used this package in a workflow combined with the CalTech
Borguet camera calibrations and with data exported from Hedrick’s Matlab
dltDV5 / easyWand5 tools. If decomposing someone else’s P matrix for use
as a cams.txt, it may help to remember that rotations and translations here
are in the world frame; Rc=R’, Tc-R*t (using notation of Hartley and
Zisserman).

When building for a Mac, one user (amin_abouee) noted that the extensions
should be .dylib rather that .so; this can be fixed by altering the lines in both the Makefile and the code, e.g.:

libsba = ctypes.CDLL("libsba.dylib")

On rotations: AndyLJones noted the following “SBA works with two sets of rotations. There’s the initial rotations, which are fed in as part of the globs argument of sba_motstr_levmar_x and family in libsba. These are fixed throughout the optimization. There’re also the “local rotations”, as Lourakis’s readme calls them, which are fed in with the rest of the camera parameters via the p argument to the same function. These are updated at each step. Internally, libsba uses local_rotation * initial_rotation when figuring out the projections.” This becomes important if you are working on a known-rotation problem and wish to specify initial rotations. See Issue #16 for more detail.

Contributors

The original sba C library was written by Manolis Lourakis and is
described in Lourakis, Manolis I A and Antonis A Argyros (2004), “The design
and implementation of a generic sparse bundle adjustment software package
based on the Levenberg-Marquardt algorithm”, FOURTH_ICS TR-340.

If using this package in research work, we would appreciate you citing it: D Theriault, N Fuller, B Jackson, E Bluhm, D Evangelista, Z Wu, M Betke, and T Hedrick (2014). A protocol and calibration method for accurate multi-camera field videography. J exp Biol 217:1843-1848. The BibTeX entry is:

@article{Theriault:2014,
author = {Theriault, D and Fuller, N and Jackson, B and Bluhm, E and Evangelista, D and Wu, Z and Betke, M and Hedrick, T},
title = {A protocol and calibration method for accurate multi-camera field videography},
journal = {J exp Biol},
doi={10.1242/jeb.100529},
year = {2014},
volume = {217},
pages = {1843--1848}}

Thanks also to

Manolis Lourakis and Antonis Argyros, Ty Hedrick, Evan Bluhm, my mom and the academy. Version 1.6.5 has bug fixes from Isaac Yeaton and Nick Gravish, and notes on Mac usage from Amin Abouee. Andy Jones helped provide clarification on rotations in known-rotation problems.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

